Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-1979269

ABSTRACT

Background: Severe outcomes of COVID-19 account for up to 15% of all cases. The study aims to check if any gene variants related to cardiovascular (CVD) and pulmonary diseases (PD) are correlated with a severe outcome of COVID-19 in a Polish cohort of COVID-19 patients. Methods: In this study, a subset of 747 samples from unrelated individuals collected across Poland in 2020 and 2021 was used and whole-genome sequencing was performed. Results: The GWAS analysis of SNPs and short indels located in genes related to CVD identified one variant significant in COVID-19 severe outcome in the HADHA gene, while for the PD gene panel, we found two significant variants in the DRC1 gene. In this study, both potentially protective and risk variants were identified, of which variants in the HADHA gene deserve the most attention. Conclusions: This is the first study reporting the association between the HADHA and DRC1 genetic variants and COVID-19 severe outcome based on the cohort WGS analysis. Although all the identified variants are localised in introns, they may be correlated and therefore inherited along with other risk variants, potentially causative to severe outcome of COVID-19 but not discovered yet.


Subject(s)
COVID-19 , Cardiovascular Diseases , COVID-19/genetics , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Humans , INDEL Mutation , Lung , Polymorphism, Single Nucleotide
3.
Nat Immunol ; 23(2): 159-164, 2022 02.
Article in English | MEDLINE | ID: covidwho-1475313

ABSTRACT

SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/virology , Genetic Heterogeneity , Host-Pathogen Interactions , Humans , Phenotype , Protective Factors , Risk Assessment , Risk Factors , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL